Definitions | x:A B(x), b, ES, s = t, Type, x:A B(x), AbsInterface(A), left + right, , case b of inl(x) => s(x) | inr(y) => t(y), P  Q, x:A. B(x), if b then t else f fi , {x:A| B(x)} , sys-antecedent(es;Sys), P Q, e loc e' , fifo-antecedent(es;Sys;f), t T, E, a:A fp B(a), E(X), strong-subtype(A;B), chain-consistent(f;chain), type List, x:A. B(x), f(a), loc(e), Id, a < b, A, P & Q, hd(l), L1 L2, adjacent(T;L;x;y), (x l), no_repeats(T;l), let x,y = A in B(x;y), t.1, (e <loc e'), Top, e  X, X(e), cr-explanation{i:l}(es; Sys; f; e), (e < e'), False, [car / cdr], P  Q, P   Q, last(L), l[i], ff, e = e', <a, b>,  b, tt, e c e', EqDecider(T), Unit, IdLnk, EOrderAxioms(E; pred?; info), EState(T), Knd,  x. t(x),  x,y. t(x;y), kindcase(k; a.f(a); l,t.g(l;t) ), Msg(M), , , val-axiom(E;V;M;info;pred?;init;Trans;Choose;Send;val;time), e < e', r s, constant_function(f;A;B), loc(e), kind(e), , p   q, p  q, p  q, i <z j, i z j, , x dom(f), {T}, n+m, #$n, A B, Outcome, !Void(), S T, n - m, |g|, SWellFounded(R(x;y)), inr x , inl x , True, pred!(e;e'), x:A.B(x), suptype(S; T), first(e), pred(e), x.A(x), i j , -n, prior(X), p =b q, (i = j), x =a y, null(as), a < b, x f y, a < b, [d] , eq_atom$n(x;y), q_le(r;s), q_less(a;b), qeq(r;s), a = b, a = b, deq-member(eq;x;L), as @ bs, A c B, f g, f(x)?z, es-vartype(es; i; x), es-state(es; i), decl-state(ds), ma-state(ds), T, [], A List , Dec(P), e<e'.P(e), e e'.P(e), e<e'. P(e), e e'.P(e), e [e1,e2).P(e), e [e1,e2).P(e), e [e1,e2].P(e), e [e1,e2].P(e), e (e1,e2].P(e), ||as||, b | a, a ~ b, a b, a <p b, a < b, x L. P(x), ( x L.P(x)), r < s, q-rel(r;x), l_disjoint(T;l1;l2), SqStable(P), a =!x:T. Q(x), InvFuns(A;B;f;g), Inj(A;B;f), IsEqFun(T;eq), Refl(T;x,y.E(x;y)), Sym(T;x,y.E(x;y)), Trans(T;x,y.E(x;y)), AntiSym(T;x,y.R(x;y)), Connex(T;x,y.R(x;y)), CoPrime(a,b), Ident(T;op;id), Assoc(T;op), Comm(T;op), Inverse(T;op;id;inv), BiLinear(T;pl;tm), IsBilinear(A;B;C;+a;+b;+c;f), IsAction(A;x;e;S;f), Dist1op2opLR(A;1op;2op), fun_thru_1op(A;B;opa;opb;f), FunThru2op(A;B;opa;opb;f), Cancel(T;S;op), monot(T;x,y.R(x;y);f), IsMonoid(T;op;id), IsGroup(T;op;id;inv), IsMonHom{M1,M2}(f), a b, IsIntegDom(r), IsPrimeIdeal(R;P), pred(e), lastchange(x;e), es-init(es;e), kind(e), rcv(l; tg), locl(a), first(e), source(l), destination(l), s ~ t, SQType(T), isrcv(e), es-first-from(es;e;l;tg), isrcv(k), Atom$n, (last change to x before e), {i..j }, e (e1,e2].P(e), @e(x v), sender(e), MaName, increasing(f;k), f**(e), es-prior-fixedpoints{i:l}(es; Sys; f; e), t ...$L |
Lemmas | es-prior-fixedpoints wf, es-fix-step, es-le-causle, es-prior-fixedpoints-fix, chain-consistent-after-input, decidable equal Id, decidable es-causle, es-causle weakening locl, es-is-prior-interface, es-le-total, es-isrcv-loc, es-le-loc, es-loc-pred, all functionality wrt iff, implies functionality wrt iff, iff wf, rev implies wf, es-locl-iff, es-causle-le, es-le-prior-interface-val, sq stable from decidable, decidable assert, es-loc wf, member singleton, length wf nat, length wf1, select wf, member append, decidable es-le, cr-explanation wf, es-interface-val wf, squash wf, es-interface-subtype rel, es-prior-interface-val, es-prior-interface wf, ge wf, nat properties, kind wf, loc wf, first wf, pred! wf, strongwellfounded wf, es-causle wf, es-is-interface wf, true wf, btrue wf, bfalse wf, fifo-antecedent wf, es-interface wf, chain-consistent wf, es-causl-swellfnd, nat ind tp, guard wf, le wf, l member wf, es-causl wf, es-locl wf, es-le wf, es-interface-val wf2, eqtt to assert, eqff to assert, iff transitivity, assert of bnot, not functionality wrt iff, assert-es-eq-E-2, es-eq-E wf, bnot wf, false wf, not wf, top wf, constant function wf, assert wf, bool wf, qle wf, cless wf, val-axiom wf, rationals wf, nat wf, Msg wf, kindcase wf, Knd wf, EState wf, EOrderAxioms wf, Id wf, IdLnk wf, unit wf, deq wf, event system wf, sys-antecedent wf, es-E-interface-subtype rel, l member subtype, member wf, es-E-interface wf, es-E wf, subtype rel wf |